$$
\text { vilu= }+-\langle \rangle=+-\langle \rangle=+-\langle \rangle=
$$

Numbers and symbols are very playful, and the Land of Numbers was a happy place!

$$
+-\langle \rangle=+-\langle \rangle=+-\langle \rangle=+-\langle \rangle=\wedge
$$

II The green grass was perfect for + running and jumping.
' The soft, rolling hills were great for

+ The numbers and symbols were all great friends and enjoyed each other's +
$v+-\langle \rangle=+-\langle \rangle=+-\langle \rangle=+-\langle \rangle={ }^{\wedge}$

The symbols were in charge of all the fun activities in The Land of Numbers.

They Kept everyone busy.

$v^{+}-\langle \rangle=+-\langle \rangle=+-\langle \rangle=+-\langle \rangle=\wedge$
 II The symbol Plus and her best friend V Minus were always surrounded by $\quad 1$
 $+$ numbers.
 They loved to magically transform \checkmark numbers by putting them together or II taking them apart.
 $+$
 They both had very important jobs and were very happy and proud.

Plus was always sweet and Kind. She brought numbers together to make them larger.

She could add 2 5's to make a 10. $5+5=10$

Minus was always full of energy!

Chasing numbers around all day was fun! He NEVER got tired!

He could start with a 7, chase away a 2, and end up with 5. $7-2=5$

He could start with a 10, chase away a 3, and end up with 7. $10-3=7$

0

Greater Than and Less Than were twins.

They helped numbers show their values by showing who was greater or who was less.

The numbers loved this game! The twins were very happy and proud of their jobs.

The only symbol in the Land of Numbers who was NOT happy, was Equal.

$$
+-\langle \rangle=+-\langle \rangle=+-\langle \rangle=+-\langle \rangle=\wedge
$$

II Even though the other symbols always included him in their number sentences ${ }_{1}$ and equations, he did not feel special. + Equal did not feel important.
"He simply did not understand his job!

He decided to ask the other symbols for help.

The first symbol he met was Plus.

$$
+-\langle \rangle=+-\langle \rangle=+-\langle \rangle=+-\langle \rangle=\wedge
$$ "I "Plus, what is my job? Am I important?" V $+$

^"Your job is very important!" said Plus.
"When I put numbers together, it's your + job to show the answer."

Equal thanked Plus, but he did not think that seemed like a very important job.

He decided to ask Minus.

$+-\langle \rangle=+-\langle \rangle=+-\langle \rangle=+-\langle \rangle=\wedge$ " "Minus," said Equal, "What is my Job? am I important?"

+ "Oh, I think you're very important!"

 said Minus." "When I take numbers away, it's your + job to show the answer."

Equal thanked Minus, but he still did not feel that simply showing an answer was a very important job.

He found Greater Than and Less Than playing on their seesdws.

$$
t-\langle \rangle=+-\langle \rangle=+-\langle \rangle=+-\langle \rangle=\wedge
$$

II Equal shouted, "Excuse me, but I need your help! + I Know that Plus puts numbers together. Minus takes them apart.
I know that Greater Than shows bigger numbers. Less Than shows numbers that are smaller. But what is my job? Am I important?"
$v^{+}-\langle \rangle=+-\langle \rangle=+-\langle \rangle=+-\langle \rangle=\wedge$
^ I Know that Greater Than shows bigger numbers.
II But what is my job? Am I important?"

+ Greater Than and Less Than looked at each other
$\hat{2}$ "You're EQUAL, silly! You have the
"
$+\quad$ most important job of all!"
$\hat{v}+-\langle \rangle=+-\langle \rangle=+-\langle \rangle=+-\langle \rangle=$ A
e

Equal was confused. "But, I still don't understand! What does that MEAN? What is equal?" he asked.

Less Than turned to Equal and said Kindly, "Using a seesaw may help. We tip our seesaws one way or the other to show how numbers are different. Some are larger, and some are smaller."

$$
t-\langle \rangle=+-\langle \rangle=+-\langle \rangle=+-\langle \rangle=\wedge
$$

" "Equal, you must always try to keep + your seesaw even by balancing numbers '

So, Equal found a seesaw and worked hard to keep it even. First, he balanced one number on each side.
$9=9$.
That was so easy!

He wondered what would happen if he balanced equations on each side.

He tried $2+6=6+2$.

Both sides make 8 ! They're equal!

... and all day!

He tried it with three numbers.

Both sides make 5! They're equal!

It was finally beginning to make sense!

Yes!
$1+2+2$

$$
+-\langle \rangle=+-\langle \rangle=+-\langle \rangle=+-\langle \rangle=\wedge
$$ II Equal tried experimenting. He used a plus v + on one side and a minus on the other.

V He checked it out by solving both equations. Their answers were the same! +
$\hat{\wedge}$ They were EQUAL!

$$
\text { Did } 3+3 \text { equal } 10-4 ?
$$

Equal's job was to show numbers and equations that were the same value. The value on one side of him had to be the exact same value on the other side!

Equal wanted to see what would happen if the values were NOT the same on both sides.

$$
\text { Did } 3+3 \text { equal } 9-4 ?
$$

The seesaw tipped and ...

Equal was getting very good at his job. He made up a game called "Missing Number."

He would place numbers on both sides with one number missing. The numbers had to guess who was missing to make the equation equal.

Of course, the numbers

loved this!

Equal didn't need the seesaw anymore. He could pop himself into any equation or number sentence and Know why he was there.

$v^{+}-\langle \rangle=+-\langle \rangle=+-\langle \rangle=+-\langle \rangle=\wedge$

he knew he was just as important as＋ all the other symbols．
\qquad

$$
r-\langle \rangle=
$$

$$
+-\langle \rangle=
$$

$$
+-\langle \rangle=
$$

$$
t-\langle \rangle=
$$

\qquad

